Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol
نویسنده
چکیده
The dominant component of atmospheric, organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic “molecular corridors” with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM / dlogC0). It varies in the range of 10–30 g mol−1, depending on the molecular size of the SOA precursor and the O :C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and describe the properties of the products, pathways, and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate.
منابع مشابه
Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles
This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA) in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreve...
متن کاملThe role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles.
The heterogeneous reactions of O₃ with aerosol particles are of central importance to air quality. They are studied extensively, but the molecular mechanisms and kinetics remain unresolved. Based on new experimental data and calculations, we show that long-lived reactive oxygen intermediates (ROIs) are formed. The chemical lifetime of these intermediates exceeds 100 seconds, which is much longe...
متن کاملGas uptake and chemical aging of semisolid organic aerosol particles.
Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous...
متن کاملMultiphase reactions in secondary organic aerosol formation
Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation A. Gelencsér and Z. Varga Air Chemistry Group of the Hungarian Academy of Sciences, P.O. Box 158, H-8201 Veszprém, Hungary Department of Earth and Environmental Sciences, University of Veszprém, Egyetem u. 10, H-8200 Veszprém, Hungary Received: 4 May 2005 – Accepted: 19 May 2005...
متن کاملStochastic methods for aerosol chemistry: a compact molecular description of functionalization and fragmentation in the heterogeneous oxidation of squalane aerosol by OH radicals.
The heterogeneous oxidation of organic aerosol by hydroxyl radicals (OH) can proceed through two general pathways: functionalization, in which oxygen functional groups are added to the carbon skeleton, and fragmentation, in which carbon-carbon bonds are broken, producing higher volatility, lower molecular weight products. An ongoing challenge is to develop a quantitative molecular description o...
متن کامل